Recitation 10. May 18

Focus: statistics, Fourier series

Consider running a measurement n times, and getting the samples x1, x3,...,x,. The collection of these n numbers
is known as a data seat. The of the data set is:
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Given two data sets x1,...,x, and y1,...,y, with means u and v, their | covariance | is:
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Ty = —= (@1 = W = v) -+ (@0 = 1)y — 1))
(you get n — 1 instead of n in the denominator due to Bessel’s correction).

The covariance of the data set z1, ..., z, with itself is called its Y= ((z1— )2+ + (zn — p)?).
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In terms of the vectorso= ||,z = | : [,y = | : |, the (co)variance is given by:
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In general, let A = | : : : | a matrix of different data sets. Their | covariance matrix | is computed by:
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Any 27-periodic function f(z) can be written as a | Fourier series |:

f(x) =ao+ ajcosz + agcos2x + agcos3x + - -+ + by sinx + by sin 2z + bysin3z + - - -

where:
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an = — f(x) cos(nx)dx
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b, = — f(x)sin(nx)dx
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for all n > 0. Alternatively, one can define complex-valued Fourier series, and write any 2m-periodic function as:
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1. Consider the matrix:
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For some constants a and b. Suppose it is a covariance matrix of two random variables X and Y.

e What can you say about a and b based on the information above?

e What can you say about a and b if, on top of the information above, you know that there is some linear
combination of X and Y that are constant?

Solution: Any covariance matrix is a symmetric positive semidefinite matrix. By symmetry, we conclude that
a = 2. By positive definiteness, we conclude that Tr = 1+ b and det = b — 4 should both be non-negative, so
this implies b > 4. If we also know that a certain linear combination of X and Y is constant, then the energy
of the corresponding vector (of coefficients in that linear combination) is 0. This only happens if the matrix
is not positive definite, hence det = 0, hence b = 4 (FYL: the linear combination which is constant would be

. 2 . .
2X —Y, since {_ ] spans the null-space of the covariance matrix).
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2. Consider the following measurements for temperature and pressure (don’t worry about units):

T=12 and P=
-3

N = O

e Compute the covariance matrix of 7" and P.

e Find linear combinations of temperature and pressure that are uncorrelated.

Solution: First we put the above samples into a matrix:
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Also consider the matrix:
(12 -1 -1
P= 3 -1 2 -1
-1 -1 2
Then the covariance matrix is given by:
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To find independent random variables we need to diagonalize K. Note that the eigenvalues are given by \; = 6
and A\ = 8 with eigenvectors:
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Thus we conclude that T'— P and T+ P are independent random variables.

3. Cousider the 27-periodic square wave, which on the interval [—, 7] is described by the function:
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Compute the Fourier series expansion of f(z), in terms of either sines/cosines or complex exponentials.



Solution: The various Fourier coefficients are calculated as in the formulas on the first page:
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for all n > 0. We conclude that:
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(by the way, we could have predicted that the a,, for n > 0 are 0, since f(z) — 1 is an odd function like sin(nz)

and unlike cos(nz)).

For the complex Fourier series, you could either convert in the formula above all sines and cosines to complex

exponentials via:
eikx + efikx ) ikx _ efikx
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or you could compute the complex Fourier coefficients using the formula on the first page. Let us go for the
latter route:
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Therefore, we conclude that:

eikz _ 67ikz
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